Lines: Lesson 10
 Direct Variation: Notes

Name:

\qquad MATH $\times \frac{1}{+}$ ALL

Direct Variation

NOT Direct Variation

$$
\begin{gathered}
y \text {-intercept }= \\
y=
\end{gathered}
$$

The amount you get paid varies directly with the number of hours you work:
\qquad

$$
=
$$ -

Your distance traveled varies directly to the number of hours driven:
\qquad
\qquad .

Our weight on the moon varies directly to our weight on earth:
\qquad $=0.165$. \qquad

$$
y=k x \longrightarrow k=
$$

\qquad
Are these data sets examples of direct variation?

x	y
2	1
3	6
4	8

x	y
-6	9
1	-1.5
8	-12

If y varies directly with x, and when $x=6, y=2$, what is y when $x=24$?

1. Write the direct variation equation: \qquad
2. Put in the numbers that are related: \qquad
3. Solve for k :
4. Put our k into the original formula: \qquad
5. Put the new number in, and then solve for the other:

The number of candies produced on a machine varies directly with the number of hours the machine is running. When the machine runs for 5 hours, there are 750 candies. How many candies are there when the machine runs for 8 hours?

