Lines: Lesson 1

Introduction to Lines: Notes

Name: _____

MATH * ALL

List some of the infinite answers to y = -3x + 5

To "solve" lines:

- Make a table. X , the equation, yoint.
 Choose X values (at least 2).

Best choices: $\frac{O}{A}$ and $\frac{1}{A}$ OR in $\frac{2}{3}x+8=y$, choose $\frac{O}{A}$ and $\frac{3}{A}$.

- 3. Plug in x's and evaluate
- 4. Translate x and y into a point
 5. Plot your points and make a line .

Solve:

$$y = -3x + 5$$

X	-3 <i>x</i> +5	у	point
0	-3(0)+5	5	(0,5)
- 1	-3(1)+5	2	(1,2)
2	-3(2)+5	- ((2,-1)
			-

Solve:

$$y = \frac{1}{4}x - 2$$

y-intercept:

slope: $\frac{up}{over}$: $\frac{1}{4}$

Which of these points fit on the line y=-2x+1? (1, 3) (0, 5) (2, -3)

$$\frac{3}{3} = -2 \cdot 1 + 1$$
 $\frac{5}{2} = 2 \cdot 0 + 1$ $\frac{-3}{3} = 2 \cdot 2 + 1$ $\frac{3}{3} = -2 + 1$ $\frac{5}{4} = 0 + 1$ $\frac{-3}{3} = 4 + 1$ $\frac{-3}{3} = -3$ $\frac{-3}{4} = 4 + 1$

What we know about lines so far:

- 1. Any equation with an _____ and _____, where they are not raised to visible powers, will create a _______.
- 2. We can create a $\frac{1}{2}$ of values to fit the x's and y's.
- 3. Every point on the line is an <u>Onswer</u> to the equation.
- 4. The y-intercept is the <u>last</u> number when written like this: $y = \frac{5}{7} \times + \frac{1}{7}$
- 5. To go from one point to another, I go up the top number, down the bottom number, and is called the <u>slope</u>.